物理動量知識點
在我們平凡無奇的學生時代,看到知識點,都是先收藏再說吧!知識點在教育實踐中,是指對某一個知識的泛稱。掌握知識點有助于大家更好的學習。下面是小編整理的物理動量知識點,僅供參考,大家一起來看看吧。
物理動量知識點 篇1
全面理解動量守恒定律
定義:如果一個系統不受外力或所受外力的矢量和為零,那么這個系統的總動量保持不變,這個結論叫做動量守恒定律。動量守恒定律是自然界中最重要最普遍的守恒定律之一,它既適用于宏觀物體,也適用于微觀粒子;既適用于低速運動物體,也適用于高速運動物體。
動量守恒定律的適用條件:
(1)系統不受外力或系統所受的外力的合力為零。
(2)系統所受外力的合力雖不為零,但比系統內力小得多。
(3)系統所受外力的合力雖不為零,但在某個方向上的分力為零,則在該方向上系統的總動量保持不變??分動量守恒。
注意:
(1)區分內力和外力。
碰撞時兩個物體之間一定有相互作用力,由于這兩個物體是屬于同一個系統的,它們之間的力叫做內力;系統以外的物體施加的,叫做外力。
(2)在總動量一定的情況下,每個物體的動量可以發生很大變化。
例如:靜止的兩輛小車用細線相連,中間有一個壓縮的彈簧。燒斷細線后,由于彈力的作用,兩輛小車分別向左右運動,它們都獲得了動量,但動量的矢量和為零。
動量守恒的數學表述形式:
(1)p=p′
即系統相互作用開始時的總動量等于相互作用結束時(或某一中間狀態時)的總動量。
(2)Δp=0
即系統的總動量的變化為零.若所研究的系統由兩個物體組成,則可表述為:
m1v1+m2v2=m1v1′+m2v2′ (等式兩邊均為矢量和)
(3)Δp1=-Δp2
即若系統由兩個物體組成,則兩個物體的動量變化大小相等,方向相反,此處要注意動量變化的矢量性。在兩物體相互作用的過程中,也可能兩物體的動量都增大,也可能都減小,但其矢量和不變。
動量定理與動能定理的區別:
動量定理Ft=mv2-mv1反映了力對時間的累積效應,是力在時間上的積累。為矢量,既有大小又有方向。 動能定理Fs=1/2mv2-1/2mv02反映了力對空間的累積效應,是力在空間上的積累。為標量,只有大小沒有方向。
系統內力只改變系統內各物體的運動狀態,不能改變整個系統的運動狀態,只有外力才能改變整個系統的運動狀態,所以,系統不受或所受外力為0時,系統總動量保持不變.
爆炸與碰撞的比較:
(1)爆炸,碰撞類問題的共同特點是物體的相互作用突然發生,相互作用的力為變力,作用時間很短,作用力很大,且遠大于系統所受的外力,故可用動量守恒定律處理。
(2)在爆炸過程中,有其他形式的能轉化為動能,系統的動能在爆炸后可能增加;在碰撞過程中,系統總動能不可能增加,一般有所減少轉化為內能。
(3)由于爆炸,碰撞類問題作用時間很短,作用過程中物體的位移很小,一般可忽略不計,可以把作用過程作為一個理想化過程簡化處理,即作用后還從作用前的瞬間的位置以新的動量開始運動。
物理動量知識點 篇2
動量定理是力對時間的積累效應,使物體的動量發生改變,適用的范圍很廣,它的研究對象可以是單個物體,也可以是物體系;它不僅適用于恒力情形,而且也適用于變力情形,尤其在解決作用時間短、作用力大小隨時間變化的打擊、碰撞等問題時,動量定理要比牛頓定律方便得多,本文試從幾個角度談動量定理的應用。
[一、 用動量定理解釋生活中的現象]
[例 1] 豎立放置的粉筆壓在紙條的一端.要想把紙條從粉筆下抽出,又要保證粉筆不倒,應該緩緩、小心地將紙條抽出,還是快速將紙條抽出?說明理由。
[解析] 紙條從粉筆下抽出,粉筆受到紙條對它的滑動摩擦力μmg作用,方向沿著紙條抽出的方向.不論紙條是快速抽出,還是緩緩抽出,粉筆在水平方向受到的摩擦力的大小不變.在紙條抽出過程中,粉筆受到摩擦力的作用時間用t表示,粉筆受到摩擦力的沖量為μmgt,粉筆原來靜止,初動量為零,粉筆的末動量用mv表示.根據動量定理有:μmgt=mv。
如果緩慢抽出紙條,紙條對粉筆的作用時間比較長,粉筆受到紙條對它摩擦力的沖量就比較大,粉筆動量的改變也比較大,粉筆的底端就獲得了一定的速度.由于慣性,粉筆上端還沒有來得及運動,粉筆就倒了。
如果在極短的時間內把紙條抽出,紙條對粉筆的摩擦力沖量極小,粉筆的動量幾乎不變.粉筆的動量改變得極小,粉筆幾乎不動,粉筆也不會倒下。
[二、 用動量定理解曲線運動問題]
[例 2] 以速度v0 水平拋出一個質量為1 kg的物體,若在拋出后5 s未落地且未與其它物體相碰,求它在5 s內的動量的變化.(g=10 m/s2)。
[解析] 此題若求出末動量,再求它與初動量的矢量差,則極為繁瑣.由于平拋出去的物體只受重力且為恒力,故所求動量的變化等于重力的沖量.則
Δp=Ft=mgt=1×10×5=50 kg·m / s。
[點評] ① 運用Δp=mv-mv0求Δp時,初、末速度必須在同一直線上,若不在同一直線,需考慮運用矢量法則或動量定理Δp=Ft求解Δp.②用I=F·t求沖量,F必須是恒力,若F是變力,需用動量定理I=Δp求解I。
[三、 用動量定理解決打擊、碰撞問題]
打擊、碰撞過程中的相互作用力,一般不是恒力,用動量定理可只討論初、末狀態的動量和作用力的沖量,不必討論每一瞬時力的大小和加速度大小問題。
[例 3] 蹦床是運動員在一張繃緊的彈性網上蹦跳、翻滾并做各種空中動作的運動項目.一個質量為60 kg的運動員,從離水平網面3.2 m高處自由落下,觸網后沿豎直方向蹦回到離水平網面1.8 m高處.已知運動員與網接觸的時間為1.4 s.試求網對運動員的平均沖擊力.(取g=10 m/s2)
[解析] 將運動員看成質量為m的質點,從高h1處下落,剛接觸網時速度方向向下,大小 。
彈跳后到達的高度為h2,剛離網時速度方向向上,大小,
接觸過程中運動員受到向下的重力mg和網對其向上的彈力F.選取豎直向上為正方向,由動量定理得: 。
由以上三式解得:,
代入數值得: F=1.2×103 N。
[四、 用動量定理解決連續流體的作用問題]
在日常生活和生產中,常涉及流體的連續相互作用問題,用常規的分析方法很難奏效.若構建柱體微元模型應用動量定理分析求解,則曲徑通幽,“柳暗花明又一村”。
[[例 4]] 有一宇宙飛船以v=10 km/s在太空中飛行,突然進入一密度為ρ=1×10-7 kg/m3的微隕石塵區,假設微隕石塵與飛船碰撞后即附著在飛船上.欲使飛船保持原速度不變,試求飛船的助推器的助推力應增大為多少?(已知飛船的正橫截面積S=2 m2)
[解析] 選在時間Δt內與飛船碰撞的微隕石塵為研究對象,其質量應等于底面積為S,高為vΔt的直柱體內微隕石塵的質量,即m=ρSvΔt,初動量為0,末動量為mv.設飛船對微隕石的作用力為F,由動量定理得,
則 根據牛頓第三定律可知,微隕石對飛船的撞擊力大小也等于20 N.因此,飛船要保持原速度勻速飛行,助推器的推力應增大20 N。
[五、 動量定理的應用可擴展到全過程]
物體在不同階段受力情況不同,各力可以先后產生沖量,運用動量定理,就不用考慮運動的細節,可“一網打盡”,干凈利索。
[[例 5]] 質量為m的物體靜止放在足夠大的水平桌面上,物體與桌面的動摩擦因數為μ,有一水平恒力F作用在物體上,使之加速前進,經t1 s撤去力F后,物體減速前進直至靜止,問:物體運動的總時間有多長?
[[解析]] 本題若運用牛頓定律解決則過程較為繁瑣,運用動量定理則可一氣呵成,一目了然.由于全過程初、末狀態動量為零,對全過程運用動量定理,有
故。
[六、 動量定理的應用可擴展到物體系]
盡管系統內各物體的運動情況不同,但各物體所受沖量之和仍等于各物體總動量的變化量。
[[例 6]] 質量為M的金屬塊和質量為m的木塊通過細線連在一起,從靜止開始以加速度a在水中下沉,經時間t1,細線斷裂,金屬塊和木塊分離,再經過時間t2木塊停止下沉,此時金屬塊的速度多大?(已知此時金屬塊還沒有碰到底面.)
[[解析]] 金屬塊和木塊作為一個系統,整個過程系統受到重力和浮力的沖量作用,設金屬塊和木塊的浮力分別為F浮M和F浮m,木塊停止時金屬塊的速度為vM,取豎直向下的方向為正方向,對全過程運用動量定理得
、
細線斷裂前對系統分析受力有
、
聯立①②得 。
綜上,動量定量的應用非常廣泛.仔細地理解動量定理的物理意義,潛心地探究它的典型應用,對于我們深入理解有關的知識、感悟方法,提高運用所學知識和方法分析解決實際問題的能力很有幫助.
物理動量知識點 篇3
1、動量是矢量
其方向與速度方向相同,大小等于物體質量和速度的乘積,即P=mv。
2、沖量也是矢量
它是力在時間上的積累。沖量的方向和作用力的方向相同,大小等于作用力的大小和力作用時間的乘積。
在計算沖量時,不需要考慮被作用的物體是否運動,作用力是何種性質的力,也不要考慮作用力是否做功。
在應用公式I=Ft進行計算時,F應是恒力,對于變力,則要取力在時間上的平均值,若力是隨時間線性變化的,則平均值為
3、動量定理:
動量定理是描述力的時間積累效果的,其表示式為I=ΔP=mv-mv0式中I表示物體受到所有作用力的沖量的矢量和,或等于合外力的沖量;
ΔP是動量的增量,在力F作用這段時間內末動量和初動量的矢量差,方向與沖量的方向一致。
動量定理可以由牛頓運動定律與運動學公式推導出來,但它比牛頓運動定律適用范圍更廣泛,更容易解決一些問題。
4、動量守恒定律
(1)內容:對于由多個相互作用的質點組成的系統,若系統不受外力或所受外力的矢量和在某力學過程中始終為零,則系統的總動量守恒,公式:
(2)內力與外力:系統內各質點的相互作用力為內力,內力只能改變系統內個別質點的動量,與此同時其余部分的動量變化與它的變化等值反向,系統的總動量不會改變。外力是系統外的物體對系統內質點的作用力,外力可以改變系統總的動量。
(3)動量守恒定律成立的條件
a、不受外力
b、所受合外力為零
c、合外力不為零,但F內>>F外,例如爆炸、碰撞等。
d、合外力不為零,但在某一方向合外力為零,則這一方向動量守恒。
(4)應用動量守恒應注意的幾個問題:
a、所有系統中的質點,它們的速度應對同一參考系,應用動量守恒定律建立方程式時它們的速度應是同一時刻的。
b、無論機械運動、電磁運動以及微觀粒子運動、只要滿足條件,定律均適用。
(5)動量守恒定律的應用步驟。
第一,明確研究對象。
第二,明確所研究的物理過程,分析該過程中研究對象是否滿足動量守恒的條件。
第三,明確初、末態的動量及動量的變化。
第四,確定參考系和坐標系,最后根據動量守恒定律列方程,求解。
物理動量知識點 篇4
沖量與動量(物體的受力與動量的變化)
1.動量:p=v {p:動量(g/s),:質量(g),v:速度(/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N?s),F:恒力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=vt–v {Δp:動量變化Δp=vt–v,是矢量式}
5.動量守恒定律:p前總=p后總或p=p’′也可以是1v1+2v2=1v1′+2v2′
6.彈性碰撞:Δp=0;ΔE=0 {即系統的動量和動能均守恒}
7.非彈性碰撞Δp=0;0<ΔE<ΔE {ΔE:損失的動能,E:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔE=ΔE {碰后連在一起成一整體}
9.物體1以v1初速度與靜止的物體2發生彈性正碰:
v1′=(1-2)v1/(1+2) v2′=21v1/(1+2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恒、動量守恒)
11.子彈水平速度v射入靜止置于水平光滑地面的長木塊M,并嵌入其中一起運動時的機械能損失
E損=v2/2-(M+)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
物理動量知識點 篇5
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(Ns),F:恒力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恒定律:p前總=p后總或p=p’也可以是m1v1+m2v2=m1v1+m2v2
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恒}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰后連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1=(m1-m2)v1/(m1+m2) v2=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恒、動量守恒)
11.子彈m水平速度vo射入靜止置于水平光滑地面的長木塊M,并嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
注:
(1)正碰又叫對心碰撞,速度方向在它們“中心”的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)系統動量守恒的條件:合外力為零或系統不受外力,則系統動量守恒(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恒,原子核衰變時動量守恒;
(5)爆炸過程視為動量守恒,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。
物理動量知識點 篇6
1.動量和沖量:
(1)動量:運動物體的質量和速度的乘積叫做動量,即p=mv。是矢量,方向與v的方向相同。兩個動量相同必須是大小相等,方向一致。
(2)沖量:力和力的作用時間的乘積叫做該力的沖量,即I=Ft。沖量也是矢量,它的方向由力的方向決定。
2.動量定理:
物體所受合外力的沖量等于它的動量的變化。表達式:Ft=p′-p或Ft=mv′-mv
(1)上述公式是一矢量式,運用它分析問題時要特別注意沖量、動量及動量變化量的方向。高三物理一輪復習中也需要特別注意。
(2)公式中的F是研究對象所受的包括重力在內的所有外力的合力。
(3)動量定理的研究對象可以是單個物體,也可以是物體系統。對物體系統,只需分析系統受的外力,不必考慮系統內力。系統內力的作用不改變整個系統的總動量。
(4)動量定理不僅適用于恒定的力,也適用于隨時間變化的力。對于變力,動量定理中的力F應當理解為變力在作用時間內的平均值。
3.動量守恒定律:
一個系統不受外力或者所受外力之和為零,這個系統的總動量保持不變。
表達式:m1v1+m2v2=m1v1′+m2v2′
(1)動量守恒定律成立的條件
①系統不受外力或系統所受外力的合力為零。
、谙到y所受的外力的合力雖不為零,但系統外力比內力小得多,如碰撞問題中的摩擦力,爆炸過程中的重力等外力比起相互作用的內力來小得多,可以忽略不計。
、巯到y所受外力的合力雖不為零,但在某個方向上的分量為零,則在該方向上系統的總動量的分量保持不變。
(2)動量守恒的速度具有“四性”:①矢量性;②瞬時性;③相對性;④普適性。
4.爆炸與碰撞
(1)爆炸、碰撞類問題的共同特點是物體間的相互作用突然發生,作用時間很短,作用力很大,且遠大于系統受的外力,故可用動量守恒定律來處理。
(2)在爆炸過程中,有其他形式的能轉化為動能,系統的動能爆炸后會增加,在碰撞過程中,系統的總動能不可能增加,一般有所減少而轉化為內能。
(3)由于爆炸、碰撞類問題作用時間很短,作用過程中物體的位移很小,一般可忽略不計,可以把作用過程作為一個理想化過程簡化處理。即作用后還從作用前瞬間的位置以新的動量開始運動。
5.反沖現象:反沖現象是指在系統內力作用下,系統內一部分物體向某方向發生動量變化時,系統內其余部分物體向相反的方向發生動量變化的現象。噴氣式飛機、火箭等都是利用反沖運動的實例。顯然,在反沖現象里,系統的動量是守恒的。
物理動量知識點 篇7
【實驗目的】
(])驗證動量守恒定律。
(2)進一步熟悉氣墊導軌、通用電腦計數器的使用方法。
(3)用觀察法研究彈性碰撞和非彈性碰撞的特點。
【實驗儀器】
氣墊導軌,電腦計數器,氣源,物理天平等。_動量守恒定律
【實驗原理】
如果某一力學系統不受外力,或外力的矢量和為零,則系統的總動量保持不變,這就是動量守恒定律。本實驗中利用氣墊導軌上兩個滑塊兒的碰撞來驗證動量守恒定律的。在水平導軌上滑塊兒與導軌之間的摩擦力忽略不計,則兩個滑塊兒在碰撞時除受到相互作用的內力外,在水平方向不受外力的`作用,因而碰撞的動母守恒。
【實驗內容】
1.用彈性碰投驗證動量守恒定律
2.用完全非彈性硅撞驗證動量守恒——動量守恒定律
物理動量知識點 篇8
1.力的沖量
定義:力與力作用時間的乘積--沖量I=Ft
矢量:方向--當力的方向不變時,沖量的方向就是力的方向。
過程量:力在時間上的累積作用,與力作用的一段時間相關
單位:牛秒、N?s
2.動量
定義:物體的質量與其運動速度的乘積--動量p=mv
矢量:方向--速度的方向
狀態量:物體在某位置、某時刻的動量
單位:千克米每秒、kgm/s
3.動量定理∑Ft=mvt-mv0
動量定理研究對象是一個質點,研究質點在合外力作用下、在一段時間內的一個運動過程。定理表示合外力的沖量是物體動量變化的原因,合外力的沖量決定并量度了物體動量變化的大小和方向。
矢量性:公式中每一項均為矢量,公式本身為一矢量式,在同一條直線上處理問題,可先確定正方向,可用正負號表矢量的方向,按代數方法運算。
當研究的過程作用時間很短,作用力急劇變化(打擊、碰撞)時,∑F可理解為平均力。動量定理變形為∑F=Δp/Δt,表明合外力的大小方向決定物體動量變化率的大小方向,這是牛頓第二定律的另一種表述。
4.動量守恒:
一個系統不受外力或所受到的合外力為零,這個系統的動量就保持不變,可用數學公式表達為p=p系統相互作用前的總動量等于相互作用后的總動量。
Δp1=-Δp2相互作用的兩個物體組成的系統,兩物體動量的增量大小相等方向相反。 Δp=0系統總動量的變化為零
“守衡”定律的研究對象為一個系統,上式均為矢量運算,一維情況可用正負表示方向。注意把握變與不變的關系,相互作用過程中,每一個參與作用的成員的動量均可能在變
化著,但只要合外力為零,各物體動量的矢量合總保持不變。
注意各狀態的動量均為對同一個參照系的動量。而相互作用的系統可以是兩個或多個物體組成。
5.怎樣判斷系統動量是否守衡?
動量守衡條件是系統不受外力,或合外力為零。一般研究問題,如果相互作用的內力比外力大很多,則可認為系統動量守衡;根據力的獨立作用原理,如果在某方向上合外力為零,則在該方向上動量守衡。
注意守衡條件對內力的性質沒有任何限制,可以是電場力、磁場力、核力等等。對系統狀態沒有任何限制,可以是微觀、高速系統,也可以是宏觀、低速系統。而力的作用過程可以是連續的作用,可以是間斷的作用,如二人在光滑平面上的拋接球過程。綜上有:
物體運動狀態是否變化取決于--物體所受的合外力。
(1)力的大小和方向;
(2)力作用時間的長短。實驗表明只要力與其作用時間的乘積一定,它引起同一個物體的速度變化相同,力與力作用時間的乘積,可以決定和量度力的某種作用效果--沖量。系統的內力改變了系統內物體的動量,但系統外力才是改變系統總動量的原因。
物理動量知識點 篇9
一、電源和電流
1、電流產生的條件:
(1)導體內有大量自由電荷(金屬導體——自由電子;電解質溶液——正負離子;導電氣體——正負離子和電子)
。2)導體兩端存在電勢差(電壓)
。3)導體中存在持續電流的條件:是保持導體兩端的電勢差。
2、電流的方向
電流可以由正電荷的定向移動形成,也可以是負電荷的定向移動形成,也可以是由正負電荷同時定向移動形成。習慣上規定:正電荷定向移動的方向為電流的方向。
說明:
。1)負電荷沿某一方向運動和等量的正電荷沿相反方向運動產生的效果相同。金屬導體中電流的方向與自由電子定向移動方向相反。
。2)電流有方向但電流強度不是矢量。
(3)方向不隨時間而改變的電流叫直流;方向和強度都不隨時間改變的電流叫做恒定電流。通常所說的直流常常指的是恒定電流。
二、電動勢
1、電源
。1)電源是通過非靜電力做功把其他形式的能轉化為電勢能的裝置。
(2)非靜電力在電源中所起的作用:是把正電荷由負極搬運到正極,同時在該過程中非靜電力做功,將其他形式的能轉化為電勢能。
【注意】在不同的電源中,是不同形式的能量轉化為電能。
2、電動勢
。1)定義:在電源內部,非靜電力所做的功W與被移送的電荷q的比值叫電源的電動勢。
。2)定義式:E=W/q
(3)物理意義:表示電源把其它形式的能(非靜電力做功)轉化為電能的本領大小。電動勢越大,電路中每通過1C電量時,電源將其它形式的能轉化成電能的數值就越多。
【注意】:①電動勢的大小由電源中非靜電力的特性(電源本身)決定,跟電源的體積、外電路無關。
②電動勢在數值上等于電源沒有接入電路時,電源兩極間的電壓。
、垭妱觿菰跀抵瞪系扔诜庆o電力把1C電量的正電荷在電源內從負極移送到正極所做的功。
3、電源(池)的幾個重要參數
、匐妱觿荩核Q于電池的正負極材料及電解液的化學性質,與電池的大小無關。
、趦茸瑁╮):電源內部的電阻。
③容量:電池放電時能輸出的總電荷量。其單位是:A·h,mA·h。
【注意】:對同一種電池來說,體積越大,容量越大,內阻越小。
物理動量學習方法
圖象法
應用圖象描述規律、解決問題是物理學中重要的手段之一。因圖象中包含豐富的語言、解決問題時簡明快捷等特點,在高考中得到充分體現,且比重不斷加大。
涉及內容貫穿整個物理學。描述物理規律的最常用方法有公式法和圖象法,所以在解決此類問題時要善于將公式與圖象合一相長。
對稱法
利用對稱法分析解決物理問題,可以避免復雜的數學演算和推導,直接抓住問題的實質,出奇制勝,快速簡便地求解問題。像課本中伽利略認為圓周運動最美(對稱)為牛頓得到萬有引力定律奠定基礎。
估算法
有些物理問題本身的結果,并不一定需要有一個很準確的答案,但是,往往需要我們對事物有一個預測的估計值。像盧瑟福利用經典的粒子的散射實驗根據功能原理估算出原子核的半徑。
采用“估算”的方法能忽略次要因素,抓住問題的主要本質,充分應用物理知識進行快速數量級的計算。
物理動量學習技巧
1、理象記憶法:如當車起步和剎車時,人向后、前傾倒的現象,來記憶慣性概念。
2、濃縮記憶法:如光的反射定律可濃縮成"三線共面、兩角相等,平面鏡成像規律可濃縮為“物象對稱、左右相反”。
3、口訣記憶法:如“物體有慣性,慣性物屬性,大小看質量,不論動與靜!
4、比較記憶法:如慣性與慣性定律、像與影、蒸發與沸騰、壓力與壓強、串聯與并聯等,比較區別與聯系,找出異同。
5、推導記憶法:如推導液體內部壓強的計算公式。即p=F/S=G/S=mg/s=pvg/s=pshg/=pgh。
6、歸類記憶法:如單位時間通過的路程叫速度,單位時間里做功的多少叫功率,單位體積的某種物質的質量叫密度,單位面積的壓力叫壓強等,都可以歸納為“單位……的……叫……”類。
【物理動量知識點】相關文章:
高考物理動量知識點08-20
物理動量必備知識點12-07
物理動量知識點8篇11-07
物理動量知識點集錦8篇11-18
物理動量知識點通用8篇11-17
物理必修二動量知識點10-26
高二物理動量知識點歸納08-05
高中物理動量守恒定律知識點總結03-30
2018廣東高考物理動量守恒復習資料08-31